PlugX “malware factory” celebrates
CVE-2012-0158 anniversary

with Version 6.0

By Gabor Szappanos, Principal Researcher, SophosLabs

May 2013

Just over a year ago, in April 2012, Microsoft's Patch Tuesday [A] fixed an
exploitable vulnerability [B] known as CVE-2012-0158. [C]

This was a remotely exploitable bug in the Windows Common Controls
that was being used in the wild for drive-by attacks. Drive-bys are
malware infections that happen merely by visiting a malicious website or
opening a poisoned document, without any popup confirmations or
security warnings.

At the beginning of 2013, we wrote about a recent variant of the PlugX
malware [D], commonly seen in Tibetan-themed malware attacks, still
using the same vulnerability.

The bad news is that the attackers have celebrated the anniversary of
the CVE- 2012-0158 patch with yet another version of PlugX, which now
reaches version 6.0, and is still spreading on unpatched computers. (Yes,
malware has major version upgrade and point releases, too.)

The core of PlugX Version 6.0 is a remote-control backdoor that is similar
to previous versions - a list of the commands available to attackers on
infected computers can be found in our earlier analysis [D].

But Version 6.0 has some interesting new aspects, and also gives us a
peek into the size and structure of the programming project behind the
malware.

In this paper, we take apart the infection mechanism of the new version
to give you an insight into how attackers divide the operation of malware
into distinct steps.

Splitting up malware means that each step does only a small piece of
the overall work, in order to avoid looking suspicious on its own. The aim
is to reduce the chance of being flagged as dangerous by heuristic
defences that expect more complex behaviour.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 1

http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/
http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/
http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158%20
http://technet.microsoft.com/en-us/security/bulletin/ms12-027
http://nakedsecurity.sophos.com/2012/04/11/patch-tuesday-april-2012-critical-updates-for-windows-office-and-adobe-reader/
http://www.sophos.com/legal

PlugX “"malware factory" Version 6.0 Gabor Szappanos, SophosLabs

Delivery of the threat

The infected samples acquired by SophosLabs were delivered in RTF
(rich text format) files that triggered the CVE-2012-0158 vulnerability [C]
when opened on unpatched Windows computers.

Previous PlugX attacks have used Tibetan-themed decoys; this time the
decoy document is a timeline of the alleged arrest and detention of Anne
Zhang, the young daughter of a Chinese dissident.

H

TS T A A e T | aaBocenc | aBocedc AaBb(AaBb(AaBbecl | A
2

=
i

abe x, X’ M Mormal |7 Mo Spaci.. Heading1 Title Subtitle | ET;
Font Paragraph Styles
IZ‘\'Z'\‘1'\‘.)Q-\:1':‘2"\‘;‘|I‘4“\‘EI'\“S'\I‘T-‘\‘SI‘|-‘;‘|‘-]:\‘I|-]1“|‘I12‘\“12‘I|-1:?‘|,Jg15‘|-1£,‘|-1_'-‘|-‘
HIET), FAaTESFSBE. A mINExE, &I
ATH .
EHEH:

2013 4£ 2 A 27 BT, KMEN 10 Z R LKE R
ZRECRTREANZEY 4 ERESH A RHEZFHLE
IREAT, EEFAPENEL FEMmME 3 e, 2
FEXELE—RERH A S 20 Maf, BE—RE
FRMZ. B, ETETRKFIIKERERE REREE,
SEREEFIERFA LR, IR FEBRE. SURER
EHHEMAREME, HUXEREREFREMRENR
8th April

.

4 A 8 H, MAFEREEEFRANT, MK, BT
EHEEHRNT 40 £ AF 8 B EFEERNZEZTE TR
BERETIURZERS, BFERE ERIEREEZENH
1628, FRUEEE M EREREE LE, EEAREER
EZENZN, SERMFELERERY.

The last event listed in the decoy document is dated 08 April 2013,
presumably close to the time that this particular PlugX attack package
was put together.

This assumption is further strengthened by the timestamps in some of
the executables files created during infection. For example, the files
described below as the intermediate dropper and the final loader were
compiled early in the morning of 09 April 2013.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 2

http://www.sophos.com/legal
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158

PlugX “"malware factory" Version 6.0 Gabor Szappanos, SophosLabs

The multi-step infection scheme

We have divided the description into seven parts, each involving a
separate executable object.

Note that the malware components are not just regular Windows EXE
files. This malware consists of:

* Shellcode, made up of raw Intel machine code embedded in the
original RTF.

* Several DLLs, a special sort of executable usually loaded by
other programs.

« A clean EXE file taken from a legitimate Chinese internet
application.

* A custom binary image, used for the main payload and loaded
directly by one of the malware DLLs.

Phase 1: RTF carrier

Filename | Z%&;&5).doc (“Anne activities.doc”)
File size 512422 bytes
SHA1 | 3b4a6d4271df5276237185a642c7e00bb828f9fe

MD5 | 1d3cl84dde74acd4eal8a’25e57a40c6ced
Sophos detection | Exp/20120158-A

This file serves merely as a carrier. When it is opened on an
unpatched computer, the CVE-2012-0158 bug is triggered. Execution
flows into the phase 2 shellcode that is embedded inside the RTF.

Phase 2: Shellcode

The shellcode itself runs in two parts, a small loader/decryptor and a
much larger main body. This is common practice in document exploits,
because it reduces the amount of openly visible malicious machine code.

The loader/decryptor uses the standard method (Process Environment
Block - PEB LDR DATA - InMemoryModuleList) to locate
kernel32.d1l1 in memory and read its export table to locate the
Windows API functions it will use later.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 3

http://www.sophos.com/legal

PlugX “"malware factory" Version 6.0

Gabor Szappanos, SophosLabs

As usual, the functions are identified by matching checksums of their
names, not the names themselves. This avoids having rather obvious
function name strings such as LoadLibraryA and GetProcAddressA
visible in the decryptor's code.

push
call
mov
=or

18FA6516h
Get_API_by_checksum
[edi+ 1, eax
esi, esi

ReadFile

next_filehandle: CODE XREF: seqgfB0:008848C9L]

add esi, 4

lea eax, [edi+ 1

push eax

push esi

call ds:off_28[edi] ; GetFileSize

cmp eax, BFFFFFFFFh

jz short next_filehandle

cmp eax, 7D1a6h ; compare with RTF size

jnz short loc_4963

nov [edi+ 1, eax

mov [edi+fah], esi

push i}

push a

push 521Ch ; stage 2 offset

push dword ptr [edi+oun] ; parent RTF handle

call dword ptr [edi+ 1 ; SetFilePointer

push ; '@’

push

nov ebx, [edi+ 1

sub ebx, 521Ch

push ebx

push i}

call dword ptr [edi+ 1 ; Virtualalloc
loc_4983: ; CODE XREF: seq@@@:poo0a4808T 5

mov [edi+ 1, eax

push a

push i}

lea ebx, [edi+ 1

push ebx

mov ebx, [edi+66n]

sub ebx, 521Ch

push ebx

push dword ptr [edi+ 1 ; allocated memory handle

push dword ptr [edi+] ; parent RTF handle

call dword ptr [edi+ 1 ; ReadFile

The loader enumerates all legal file handles (for historical reasons these
start at 4 and increase by 4 for each new handle) to find an open file
that is 514222 bytes in size, the same as the RTF. In this way, the
shellcode gains access to the RTF carrier file to read in the second stage
of the shellcode.

The loader then does the following:
» Allocates a block of memory for the main body.
* Reads the main body from offset 0x521C in the RTF carrier file.

* Decrypts the main body using a simple XOR unscrambling
algorithm.

« Transfers control to the main body.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 4

http://www.sophos.com/legal

PlugX “"malware factory" Version 6.0 Gabor Szappanos, SophosLabs

The main body of the shellcode then:
* Reads in a compressed DLL and the decoy from the RTF carrier.

+ Decompresses the DLL using the system function
RtlDecompressBuffer().

* Writes the DLL to $TEMP\dw20.d11.

* Writes the decoy document to $TEMP%\ ~WINWORD.
+ Launches the DLL using LoadLibrary().

* Launches a new copy of Word to load the decoy.

The compression of the DLL and its decompression with the
RtlDecompressBuffer () system function is unusual.

The shellcode then terminates the instance of Word in which it has
grabbed control, but this is covered up by the newly-loaded decoy
document opened in a fresh copy of Word.

Phase 3: Initial dropper

Filename | dw20.dll
File size | 233472 bytes
SHA1 [5da9081013e6fc6ef33ad7adodceced8b847£543

MD5 |e22b839£f042c391fb022dc58£e7901b5

Sophos detection | Troj/Plugx-I

This is the DLL that is stored in compressed form in the RFC carrier
and extracted in phase 2.

Its purpose is to extract and drop the next file in the infection chain,
which it does as follows:

« Reads from offset OxAO0O in its own executable, where another
DLL is embedded.

« Writes the extracted data to a file in the $TEMP% directory.
« Launches the file with WinExec ().

This DLL is the intermediate dropper described in phase 4. Its filename is
generated using GetTempFileNameA () [E]. That means it is different

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 5

http://www.sophos.com/legal
http://msdn.microsoft.com/en-us/library/windows/desktop/aa364991(v=vs.85).aspx

PlugX "malware factory" Version 6.0 Gabor Szappanos, SophosLabs
every time the malware infects. The dropped file is then launched with
WinExec ().

The initial dropper DLL exports a single function, blandly named
DoWork (). This function is supposed to remove the file after it has run,
but never gets called.

As a result, this component will be left behind in the temporary directory.

Phase 4: Intermediate dropper

Filename | generated by GetTempFileNameA ()

File size | 230912 bytes
SHA1 | 9bb28483f4c32dec5f011b01f6e7e2984253ef54
MD5 |83006ac9fb73bc2b891£36dd2£759230

Sophos detection | Troj/Plugx-I

This is a regular EXE file that extracts and drops three more files:

» A copy of a clean EXE program file named Gadget.exe, created
and digitally signed by Chinese social media outfit Tencent.

* ADLL named Sidebar.dll that the Gadget.exe program will be
tricked into loading.

* A binary file named Sidebar.dll.doc that is an encrypted
binary object containing the main malware components.

GetSystemTime(&:)
if (¢ WORD) .u¥ear >= 2813u)
{
= LoadLibraryA(user3z.dll™);
= GetProcAddress(uG, "wsprintfi”);

GetCurrentProcessld();

€(int (__stdcall =)(char *, uchar_t *)) N (&9, L"Glebali\\DelSelf{%8.8X)");

CreateHutex¥(8, 8, & H

GetTenpPathti 3x880u, &Buffer);

((int (=)(const WCHAR =, const char =, ...})(&d11filename, (const char =)L"%s\\Sidebar.d11", &Buffer);
((int (*)(_UNKNOUN *, const char =, ...)))(&payloadfilename, (const char)L"%s\\Sidebar.d1l.doc”, &Buffer);
((int (=) (UCHAR >, const char x, ...)))(&loaderfilename, (const char *)L"%s\\Gadget.exe", &Buffer);

- 0;

= CreateFileW(&dllfilename, Bx400008086u, 1u, 6, 2u, 6, 8);

if ("o (HAWDLE)1)
{
= GetLastError();
¥
else

if (tWriteFile(. “HZE", OxALBBu, (DUWDRD =)& _ubayOfieek, 0))
= GetLastError();
CloseHandle(v3);
if ¢)
ExitProcess(0);
if ¢ weitefile{(const WCHAR *)&payloadfilename, v, (int)&payleaddata, 124732))
ExitProcess(0);
if (writefile(&loaderfilename, v5, (int)"HZE", 26112) }
ExitProcess(0);

The intermediate dropper deletes itself once it has done its work, so it is
only briefly present on infected systems.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 6

http://www.sophos.com/legal

PlugX "malware factory" Version 6.0 Gabor Szappanos, SophoslLabs

Phase 5: Clean loader

Filename | Gadget.exe

File size 26112 bytes

SHA1|8985c2394ed9%a58c36£907962b0724fe66c204a6

MD5 | 6b97b3cd2fcfb4b74985143230441463

This is a clean file published and signed by Chinese social media
company Tencent.

This very simple program uses LoadLibrary () to load a DLL called
Sidebar.dll, usually another component of Tencent's application, and
then calls an exported function named Main ().

Certificate

Digital Signature Details 7
General | Details | Certification Path ? ’ e
General | Advanced
@ Certificate Information =, Digital Signature Information
gl” This digital signature is OK.

This certificate is intended for the following purpose(s):
» Ensures software came from software publisher

« Protects software from alteration after publication Signer informatian
Name: [Tencent Technology{Shenzhen) Company Lirite:
E-mall: [Not avaiable
* Refer to the certification authority's statement for detais, "
iy Signing time: [16 uly 201204:16:39
Tssued to: Tencent Technology (Shenzhen) Company Limited
View Certificate | |
Issued by: VeriSign Class 3 Code Signing 2008-2 CA Countersignatures
Valid from 26/ 01/ 2010 to 2/ 01/ 013 Name ofsigner: E-mail address: Timestamp
Symantec Time ... Not available 16 July 2012 04:16:33
Install Certficate...| | Issuer Statement Detais
Learn more about certificates

Fig 4: Digital signature from Gadget.exe by Tencent

Tencent's Gadget.exe fails to specify a full directory and filename for the
DLL it loads, so it suffers from an insecure library loading vulnerability
[F].

Gadget.exe will load any DLL named Sidebar.dl1 that happens to be
in the current directory.

So, instead of directly loading the malicious Sidebar.dl1, dropped in
phase 4, the malware loads Gadget.exe and thereby indirectly loads the
malicious DLL.

This has the effect of shrouding the Sidebar DLL in a veneer of
legitimacy, because Gadget.exe is digitally signed by a trusted
certificate authority.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 7

http://www.sophos.com/legal
http://nakedsecurity.sophos.com/2010/08/26/unsafe-windows-dll-loading-mechanism-addressed-microsoft/

PlugX “"malware factory" Version 6.0 Gabor Szappanos, SophosLabs

This is the same trick described in our earlier PlugX analysis [D]; in the
earlier example, however, the malware misused a program from
graphics card vendor Nvidia instead of Tencent's Gadget.exe.

Phase 6: Final loader DLL

Filename | Sidebar.dll
File size |41984 bytes
SHA1 |22d7ab94£fd7042a781c0bee992fc0bf25f3bd626

MD5 | £e3548281£9716862ececbeb6l4ae’ale’6

Sophos detection | Troj/Plugx-I

Sidebar.dll is loaded (erroneously) by the Tencent Gadget.exe; if
the year is 2013 or later, it performs the final file-based phase of
PlugX's infection.

As explained below, the phase 7 payload file Sidebar.dll.doc is an
encrypted binary object containing the main malware components. This
means it cannot be loaded directly using standard Windows API functions
such as LoadLibrary () Or WinExec ().

ExitProcess(0);
= GetHoduleFileMameW(hHodule, &Filename, Bx2080u);
1strcatW(&Filename, L".doc");
= CreateFileW(&Filename, AxAGAABAAGU, 1u, B, 3u, 6, B);

if == (HANDLE)-1)
{

= GetLastError(};
¥

else
{
= UirtualAlloc({®, Ox100000u, Ox1080u, Bx40u);
= (int {=)(void))
if (&& ReadFile(. , Bx100000u, & , 8))
{
[rooviomon:] CalPpayload

BEp(D" FFu};

So the purpose of the Sidebar DLL is to organise the customised loading
of, and the transfer of execution to, the Sidebar.dl1l.doc file.

Phase 7: Payload

Filename | Sidebar.dll.doc

File size | 124732 bytes

SHA1|7d36518acf345794a0a6421542d1c6b8b052e58a

MD5|0475f406del4fdbca2ec542d6743elc4

Finally, we reach the component that the attackers wanted to
activate in the first place.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 8

http://www.sophos.com/legal
http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/

PlugX “"malware factory" Version 6.0 Gabor Szappanos, SophosLabs

It is not a Windows PE executable file, but a custom binary image
consisting of a loader and a number of additional encrypted binary
images that implement the functionality of the malware.

When the phase 6 final loader transfers control here, the loader code at
the start of the payload file extracts, decrypts and decompresses the
main backdoor code.

The backdoor is very similar to the version we analysed earlier [D]; even
the "demo mode" of the earlier version is present in PlugX Version 6.0.

Differences from earlier PlugX versions

The major difference is that the payload file (Sidebar.dl1l.doc) that we
acquired and analysed is clearly a debug build, featuring source logging.

The logging function is invoked like this:
plugx log(sourcefile, linenumber, statuscode) ;

Logging produces as useful trail of information because the
plugx_log () function is invoked after Windows API calls that return an
unwanted status code (usually indicating an error).

The function builds a log message, which contains the source code file
name, the current line number in the source file and the status code, as
illustrated below.

< DebugView on WEXAMPLEPC (local) [(=1[E3]
File Edit Capture Options Computer Help

sEHE) @~ R | EBBT] T #

| Tine Debug Print ~
49 262 34399414 [1332] fils: XJoin opp. lins: 57, srror: [10048]0nly one usags of sach sockst addrsss (protocolins
50 262.34411621 [1332] file: XOnline.cpp, line: 114, error: [10048]10nly one usage of each sockst address (protocol
53 28369305420 [1332] file: IRTL.cpp. line: 1495, error: [1314]A required privilege is not held by the client

8% 319.34445190 [1332] file: XRTL.cpp, line: 1495, error: [1314]4 required privilege is not held by the client

121 350.51312256 [1332] file: XRTL.cpp, line: 1495, error: [1314]A required privilege is not held by the client

149 360.18830501 [1368] file: ISetting.cpp. line: 281. error: [12006]%

150 360.19207764 [1368] file: XSetting.cpp. line: 231, error: [12006]x

161 360.19506836 [1368] file: ISetting.cpp, line: 281, error: [12006]%

152 360.19863892 [1368] file: XSetting.cpp. lins: 281 error: [12006]x

168 38157130062 [1332] file: XRTL.cpp, line: 1495, error: [1314]A requlred privilege is not held by the client

187 391.67860042 [1332] file: IRTL.cpp. line: 1495, ed privilege is not held by the client

214 391.6867675% [1332] file: ¥Sevting.cpp. line: 291, em
215 39168750000 [1332] file: XRTL.cpp, line: 1495, error: [1314]A required privilege is not held by the client
242 391.69110107 [1332] file: XSetting.cpp. lins: 281 error: [12006]%

243 391.69174194 [1332] file: XRTL.cpp, line: 1495, error: [1314]4 required privilege is not held by the client
270 39169525146 [1332] file: ISetting.cpp. line: 281. error: [12006]%

271 391.69595337 [1332] file: XRTL.cpp. line: 1495, error: [1314]h reguired privilege is not held by the clisnt
298 39169949341 [1332] file: ¥Setting.cpp, line: 281, error: [12006]x

302 412.63055420 [1332] file: IRTL.cpp. line: 1495, error: [1314]A required privilege is not held by the client

334 444.67010493 [1332] file: XRTL.cpp, line: 1495, error: [1314]4 required privilege is not held by the client
369 477 91665649 [1332] file: XRTL.cpp, line: 1495, error: [1314]A required privilege is not held by the client
397 486.38912964 [1368] file: XSetting.cpp. lins: 281 error: [12006]x
398 436.39199829 [13¢8] file: XSetting.cpp. line: 231, error: [12006]x
399 486.39508057 [1368] file: ISetting.cpp. line: 281. error: [12006]%
400 486.39822383 [1368] file: XSetting.cpp. line: 281 error: [12006]x

The log message is passed to OutputDebugStringa (), a Windows
function that usually generates no visible output. But debug output
can easily be examined with a tool such as DebugView [G]; this gives

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 9

http://www.sophos.com/legal
http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx
http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/

PlugX “"malware factory" Version 6.0 Gabor Szappanos, SophosLabs

us a way to keep track of the activity of the malware on an infected
system.

Since plugx log () receives the source code file name and a line
number as parameters, collecting logging data gives us an opportunity
to map the source code tree, and even to estimate the size of the
project.

Mapping the PlugX project

The following table contains a selection of known source file names,
known functions implemented in each source file, and the maximum line
number known in the file (probably the last API call in the the function):

Source file Procedures Functionality Max line

XBoot.cpp bootProc Initialize variables and 615
inject shellcode into
DolmpUserProc
svchost.exe process

XOnline.cpp OlProc Injects into services.exe 1184
OlProcManager
OIProcNotify

XPlgLoader.cpp LdrLoadShellCode([Shellcode to unpack 1111
and install main code in
an injected process

Enumerate shared
XPlugNethood.cpp |Nethood 213
network resources

XPlugNetstat.cpp |Netstat Set TCP connection 492
state; enumerate UDP
and TCP connections

XPlugPortMap.cpp |PortMap Perform port map 237
XPlugRegedit.cpp |RegEdit Manage registry entries 719
XPlugScreen.cp Screen Capture screenshot 1376
ScreenTl
ScreenT?2

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 10

http://www.sophos.com/legal

PlugX “"malware factory" Version 6.0 Gabor Szappanos, SophosLabs

Shell
XPlugShell.cpp ShellT1 Create remote shell 603
ShellT2
General helper
XRTL.cpp functions for all other 1683
modules
XSetting.cpp 722

Using statistical methods to estimate the actual number of lines [H]
from the maximum known number in each file (the above table is
only a partial list) gives us a total size of 19,771 lines.

Given that the header files in general are not accounted for, the entire
project almost certainly exceeds 20,000 lines of code.

Interestingly, the filename dllmain.cpp in the phase 7 payload project
shows that this component is developed as a DLL file.

Looking at the memory dump of the payload code it looks as though it is
first decoded to a valid DLL during the load process, before the first
0x1000 bytes in the allocated memory area (containing the PE header
and the section table) are overwritten.

The original DLL should therefore be available in memory as the malware
starts up. Indeed, by setting a breakpoint immediately after the
decompression stage of the phase 6 loader, we quickly revealed the
untainted DLL component.

It has a single export, D11EntryPoint (), which starts bootProc, the
initialisation function for the backdoor.

Digging deeper into the payload code revealed that during the start
process the bootProc module calls the LdrLoadShellcode procedure.
This is actually responsible for decrypting and decompressing the DLL,
loading it, then overwriting the start of the DLL header in memory.

This frustrates research by wiping out data that would be useful for
analysis, but leaving intact all the binary code that will actually run.

With a full copy of the DLL, the PE header of the payload is exposed.
This, in turn, reveals the compile time of the project: 25 February 2013.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 11

http://www.sophos.com/legal
http://en.wikipedia.org/wiki/German_tank_problem

PlugX “"malware factory" Version 6.0 Gabor Szappanos, SophosLabs

The code also includes 32-bit numeric parameters that are used when
each function is initialised.

When written out in hexadecimal, these parameters represent dates,
presumably denoting the date when each function was added to the
PlugX functionality. The compile times of the program files used in the
phases above are:

Initial dropper 08 Feb 2013 @ 03:55
Intermediate dropper 09 Apr 2013 @ 04:43
DLL loader 09 April 2013 @ 04:08
PlugX payload 25 Feb 2013 @ 15:26

The range of dates in use gives the impression that the PlugX
package components are developed and released individually, rather
than as a monolithic whole. That makes it easier for the attackers to
update or modify individual parts of the malware.

Where is it from?

Interestingly, the only source file that appears with a full pathname is
XSetting.h. The name turns out to be written in a Chinese-language
encoding, giving a full path of:

d:\work\plug6.0(360) (gadget) (FFilKZE) (EX)\
shellcode\shellcode\XSetting.h

The appearance of the string (gadget) is interesting, as it is the name
of the digitally-signed clean file inside the malware. This suggests that
the entire payload project is built around this particular clean loader file.

The first Chinese-language string within brackets above (JEiM3k%&)means
"Black hat hacker"; the second string (IE)means "Official".

You may read into that what you will.

What next?

There is no doubt that PlugX development will go on, and new features
and tricks will be introduced.

We'll keep an eye on them, and if any interesting or important new
features appear, we'll be sure to let you know.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 12

http://www.sophos.com/legal

PlugX “"malware factory" Version 6.0 Gabor Szappanos, SophosLabs

References

[A] http://nakedsecurity.sophos.com/patch-tuesday-april-2012

[B] http://technet.microsoft.com/en-us/security/bulletin/ms12-027

[C] http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158

[D] http://nakedsecurity.sophos.com/targeted-attack-nvidia-digital-sig

[E] http://msdn.microsoft.com/library/windows/desktop/aa364991%28v=vs.85%29.aspx
[F] http://nakedsecurity.sophos.com/unsafe-windows-dll-loading

[G] http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

[H] http://en.wikipedia.org/wiki/German_tank_problem

For further security information

http://www.sophos.com/why-sophos/our-people/technical-papers.aspx
http://nakedsecurity.sophos.com/

http://podcasts.sophos.com/

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 13

http://www.sophos.com/legal

