
PlugX “malware factory” celebrates
CVE-2012-0158 anniversary

with Version 6.0

By Gabor Szappanos, Principal Researcher, SophosLabs

May 2013

Just over a year ago, in April 2012, Microsoft's Patch Tuesday [A] fixed an
exploitable vulnerability [B] known as CVE-2012-0158. [C]

This was a remotely exploitable bug in the Windows Common Controls
that was being used in the wild for drive-by attacks. Drive-bys are
malware infections that happen merely by visiting a malicious website or
opening a poisoned document, without any popup confirmations or
security warnings.

At the beginning of 2013, we wrote about a recent variant of the PlugX
malware [D], commonly seen in Tibetan-themed malware attacks, still
using the same vulnerability.

The bad news is that the attackers have celebrated the anniversary of
the CVE- 2012-0158 patch with yet another version of PlugX, which now
reaches version 6.0, and is still spreading on unpatched computers. (Yes,
malware has major version upgrade and point releases, too.)

The core of PlugX Version 6.0 is a remote-control backdoor that is similar
to previous versions - a list of the commands available to attackers on
infected computers can be found in our earlier analysis [D].

But Version 6.0 has some interesting new aspects, and also gives us a
peek into the size and structure of the programming project behind the
malware.

In this paper, we take apart the infection mechanism of the new version
to give you an insight into how attackers divide the operation of malware
into distinct steps.

Splitting up malware means that each step does only a small piece of
the overall work, in order to avoid looking suspicious on its own. The aim
is to reduce the chance of being flagged as dangerous by heuristic
defences that expect more complex behaviour.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 1

http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/
http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/
http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158%20
http://technet.microsoft.com/en-us/security/bulletin/ms12-027
http://nakedsecurity.sophos.com/2012/04/11/patch-tuesday-april-2012-critical-updates-for-windows-office-and-adobe-reader/
http://www.sophos.com/legal

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

Delivery of the threat

The infected samples acquired by SophosLabs were delivered in RTF
(rich text format) files that triggered the CVE-2012-0158 vulnerability [C]
when opened on unpatched Windows computers.

Previous PlugX attacks have used Tibetan-themed decoys; this time the
decoy document is a timeline of the alleged arrest and detention of Anne
Zhang, the young daughter of a Chinese dissident.

The last event listed in the decoy document is dated 08 April 2013,
presumably close to the time that this particular PlugX attack package
was put together.

This assumption is further strengthened by the timestamps in some of
the executables files created during infection. For example, the files
described below as the intermediate dropper and the final loader were
compiled early in the morning of 09 April 2013.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 2

Fig 1: Last timeline entry in "Anne Zhang" decoy document

http://www.sophos.com/legal
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

The multi-step infection scheme

We have divided the description into seven parts, each involving a
separate executable object.

Note that the malware components are not just regular Windows EXE
files. This malware consists of:

• Shellcode, made up of raw Intel machine code embedded in the

original RTF.

• Several DLLs, a special sort of executable usually loaded by

other programs.

• A clean EXE file taken from a legitimate Chinese internet

application.

• A custom binary image, used for the main payload and loaded

directly by one of the malware DLLs.

Phase 1: RTF carrier

Filename 安妮活动.doc (“Anne activities.doc”)

File size 512422 bytes

SHA1 3b4a6d4271df5276237185a642c7e00bb828f9fe

MD5 1d3c184dde74ac4ea8a25e57a40c6ce4

Sophos detection Exp/20120158-A

This file serves merely as a carrier. When it is opened on an
unpatched computer, the CVE-2012-0158 bug is triggered. Execution
flows into the phase 2 shellcode that is embedded inside the RTF.

Phase 2: Shellcode

The shellcode itself runs in two parts, a small loader/decryptor and a
much larger main body. This is common practice in document exploits,
because it reduces the amount of openly visible malicious machine code.

The loader/decryptor uses the standard method (Process Environment

Block → PEB_LDR_DATA → InMemoryModuleList) to locate

kernel32.dll in memory and read its export table to locate the

Windows API functions it will use later.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 3

http://www.sophos.com/legal

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

As usual, the functions are identified by matching checksums of their
names, not the names themselves. This avoids having rather obvious
function name strings such as LoadLibraryA and GetProcAddressA

visible in the decryptor's code.

The loader enumerates all legal file handles (for historical reasons these
start at 4 and increase by 4 for each new handle) to find an open file
that is 514222 bytes in size, the same as the RTF. In this way, the
shellcode gains access to the RTF carrier file to read in the second stage
of the shellcode.

The loader then does the following:

• Allocates a block of memory for the main body.

• Reads the main body from offset 0x521C in the RTF carrier file.

• Decrypts the main body using a simple XOR unscrambling

algorithm.

• Transfers control to the main body.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 4

Fig 2: Shellcode locating its parent RTF "carrier" file

http://www.sophos.com/legal

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

The main body of the shellcode then:

• Reads in a compressed DLL and the decoy from the RTF carrier.

• Decompresses the DLL using the system function

RtlDecompressBuffer().

• Writes the DLL to %TEMP\dw20.dll.

• Writes the decoy document to %TEMP%\~WINWORD.

• Launches the DLL using LoadLibrary().

• Launches a new copy of Word to load the decoy.

The compression of the DLL and its decompression with the
RtlDecompressBuffer() system function is unusual.

The shellcode then terminates the instance of Word in which it has
grabbed control, but this is covered up by the newly-loaded decoy
document opened in a fresh copy of Word.

Phase 3: Initial dropper

Filename dw20.dll

File size 233472 bytes

SHA1 5da9081013e6fc6ef33a47a46dceced8b847f543

MD5 e22b839f042c391fb022dc58fe7901b5

Sophos detection Troj/Plugx-I

This is the DLL that is stored in compressed form in the RFC carrier
and extracted in phase 2.

Its purpose is to extract and drop the next file in the infection chain,
which it does as follows:

• Reads from offset 0xA00 in its own executable, where another

DLL is embedded.

• Writes the extracted data to a file in the %TEMP% directory.

• Launches the file with WinExec().

This DLL is the intermediate dropper described in phase 4. Its filename is
generated using GetTempFileNameA() [E]. That means it is different

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 5

http://www.sophos.com/legal
http://msdn.microsoft.com/en-us/library/windows/desktop/aa364991(v=vs.85).aspx

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

every time the malware infects. The dropped file is then launched with
WinExec().

The initial dropper DLL exports a single function, blandly named
DoWork(). This function is supposed to remove the file after it has run,

but never gets called.

As a result, this component will be left behind in the temporary directory.

Phase 4: Intermediate dropper

Filename generated by GetTempFileNameA()

File size 230912 bytes

SHA1 9bb28483f4c32dec5f011b01f6e7e2984253ef54

MD5 83006ac9fb73bc2b891f36dd2f759230

Sophos detection Troj/Plugx-I

This is a regular EXE file that extracts and drops three more files:

• A copy of a clean EXE program file named Gadget.exe, created

and digitally signed by Chinese social media outfit Tencent.

• A DLL named Sidebar.dll that the Gadget.exe program will be

tricked into loading.

• A binary file named Sidebar.dll.doc that is an encrypted

binary object containing the main malware components.

The intermediate dropper deletes itself once it has done its work, so it is
only briefly present on infected systems.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 6

Fig 3: Intermediate dropper creating payload files

http://www.sophos.com/legal

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

Phase 5: Clean loader

Filename Gadget.exe

File size 26112 bytes

SHA1 8985c2394ed9a58c36f907962b0724fe66c204a6

MD5 6b97b3cd2fcfb4b74985143230441463

This is a clean file published and signed by Chinese social media
company Tencent.

This very simple program uses LoadLibrary() to load a DLL called

Sidebar.dll, usually another component of Tencent's application, and

then calls an exported function named Main().

Tencent's Gadget.exe fails to specify a full directory and filename for the
DLL it loads, so it suffers from an insecure library loading vulnerability
[F].

Gadget.exe will load any DLL named Sidebar.dll that happens to be

in the current directory.

So, instead of directly loading the malicious Sidebar.dll, dropped in

phase 4, the malware loads Gadget.exe and thereby indirectly loads the

malicious DLL.

This has the effect of shrouding the Sidebar DLL in a veneer of
legitimacy, because Gadget.exe is digitally signed by a trusted

certificate authority.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 7

Fig 4: Digital signature from Gadget.exe by Tencent

http://www.sophos.com/legal
http://nakedsecurity.sophos.com/2010/08/26/unsafe-windows-dll-loading-mechanism-addressed-microsoft/

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

This is the same trick described in our earlier PlugX analysis [D]; in the
earlier example, however, the malware misused a program from
graphics card vendor Nvidia instead of Tencent's Gadget.exe.

Phase 6: Final loader DLL

Filename Sidebar.dll

File size 41984 bytes

SHA1 22d7ab94fd7042a781c0bee992fc0bf25f3bd626

MD5 fe3548281f9716862ee6e614ae7a0e76

Sophos detection Troj/Plugx-I

Sidebar.dll is loaded (erroneously) by the Tencent Gadget.exe; if

the year is 2013 or later, it performs the final file-based phase of
PlugX's infection.

As explained below, the phase 7 payload file Sidebar.dll.doc is an

encrypted binary object containing the main malware components. This
means it cannot be loaded directly using standard Windows API functions
such as LoadLibrary() or WinExec().

So the purpose of the Sidebar DLL is to organise the customised loading
of, and the transfer of execution to, the Sidebar.dll.doc file.

Phase 7: Payload

Filename Sidebar.dll.doc

File size 124732 bytes

SHA1 7d36518acf345794a0a6421542d1c6b8b052e58a

MD5 0475f406de14fdbca2ec542d6743e1c4

Finally, we reach the component that the attackers wanted to
activate in the first place.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 8

Fig 5: Malicious Sidebar.dll loaded by clean Gadget.exe

http://www.sophos.com/legal
http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

It is not a Windows PE executable file, but a custom binary image
consisting of a loader and a number of additional encrypted binary
images that implement the functionality of the malware.

When the phase 6 final loader transfers control here, the loader code at
the start of the payload file extracts, decrypts and decompresses the
main backdoor code.

The backdoor is very similar to the version we analysed earlier [D]; even
the "demo mode" of the earlier version is present in PlugX Version 6.0.

Differences from earlier PlugX versions

The major difference is that the payload file (Sidebar.dll.doc) that we

acquired and analysed is clearly a debug build, featuring source logging.

The logging function is invoked like this:

plugx_log(sourcefile,linenumber,statuscode);

Logging produces as useful trail of information because the
plugx_log() function is invoked after Windows API calls that return an

unwanted status code (usually indicating an error).

The function builds a log message, which contains the source code file
name, the current line number in the source file and the status code, as
illustrated below.

The log message is passed to OutputDebugStringA(), a Windows

function that usually generates no visible output. But debug output
can easily be examined with a tool such as DebugView [G]; this gives

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 9

Fig 6: Debugging output from the PlugX Ver. 6.0 payload

http://www.sophos.com/legal
http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx
http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

us a way to keep track of the activity of the malware on an infected
system.

Since plugx_log() receives the source code file name and a line

number as parameters, collecting logging data gives us an opportunity
to map the source code tree, and even to estimate the size of the
project.

Mapping the PlugX project

The following table contains a selection of known source file names,
known functions implemented in each source file, and the maximum line
number known in the file (probably the last API call in the the function):

Source file Procedures Functionality Max line

XBoot.cpp
bootProc
DoImpUserProc

Initialize variables and
inject shellcode into
svchost.exe process

615

XOnline.cpp OlProc
OlProcManager
OlProcNotify

Injects into services.exe 1184

XPlgLoader.cpp LdrLoadShellCode Shellcode to unpack
and install main code in
an injected process

1111

XPlugNethood.cpp Nethood
Enumerate shared
network resources

213

XPlugNetstat.cpp Netstat Set TCP connection
state; enumerate UDP
and TCP connections

492

XPlugPortMap.cpp PortMap Perform port map 237

XPlugRegedit.cpp RegEdit Manage registry entries 719

XPlugScreen.cp Screen
ScreenT1
ScreenT2

Capture screenshot 1376

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 10

http://www.sophos.com/legal

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

XPlugShell.cpp
Shell
ShellT1
ShellT2

Create remote shell 603

XRTL.cpp
General helper
functions for all other
modules

1683

XSetting.cpp 722

Using statistical methods to estimate the actual number of lines [H]
from the maximum known number in each file (the above table is
only a partial list) gives us a total size of 19,771 lines.

Given that the header files in general are not accounted for, the entire
project almost certainly exceeds 20,000 lines of code.

Interestingly, the filename dllmain.cpp in the phase 7 payload project

shows that this component is developed as a DLL file.

Looking at the memory dump of the payload code it looks as though it is
first decoded to a valid DLL during the load process, before the first
0x1000 bytes in the allocated memory area (containing the PE header
and the section table) are overwritten.

The original DLL should therefore be available in memory as the malware
starts up. Indeed, by setting a breakpoint immediately after the
decompression stage of the phase 6 loader, we quickly revealed the
untainted DLL component.

It has a single export, DllEntryPoint(), which starts bootProc, the

initialisation function for the backdoor.

Digging deeper into the payload code revealed that during the start
process the bootProc module calls the LdrLoadShellcode procedure.

This is actually responsible for decrypting and decompressing the DLL,
loading it, then overwriting the start of the DLL header in memory.

This frustrates research by wiping out data that would be useful for
analysis, but leaving intact all the binary code that will actually run.

With a full copy of the DLL, the PE header of the payload is exposed.
This, in turn, reveals the compile time of the project: 25 February 2013.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 11

http://www.sophos.com/legal
http://en.wikipedia.org/wiki/German_tank_problem

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

The code also includes 32-bit numeric parameters that are used when
each function is initialised.

When written out in hexadecimal, these parameters represent dates,
presumably denoting the date when each function was added to the
PlugX functionality. The compile times of the program files used in the
phases above are:

Initial dropper 08 Feb 2013 @ 03:55

Intermediate dropper 09 Apr 2013 @ 04:43

DLL loader 09 April 2013 @ 04:08

PlugX payload 25 Feb 2013 @ 15:26

The range of dates in use gives the impression that the PlugX
package components are developed and released individually, rather
than as a monolithic whole. That makes it easier for the attackers to
update or modify individual parts of the malware.

Where is it from?

Interestingly, the only source file that appears with a full pathname is
XSetting.h. The name turns out to be written in a Chinese-language

encoding, giving a full path of:

 d:\work\plug6.0(360)(gadget)(非洲来客)(正式)\
shellcode\shellcode\XSetting.h

The appearance of the string (gadget) is interesting, as it is the name

of the digitally-signed clean file inside the malware. This suggests that
the entire payload project is built around this particular clean loader file.

The first Chinese-language string within brackets above (非洲来客)means
"Black hat hacker"; the second string (正式)means "Official".

You may read into that what you will.

What next?

There is no doubt that PlugX development will go on, and new features
and tricks will be introduced.

We'll keep an eye on them, and if any interesting or important new
features appear, we'll be sure to let you know.

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 12

http://www.sophos.com/legal

PlugX “malware factory” Version 6.0 Gabor Szappanos, SophosLabs

References

[A] http://nakedsecurity.sophos.com/patch-tuesday-april-2012

[B] http://technet.microsoft.com/en-us/security/bulletin/ms12-027

[C] http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158

[D] http://nakedsecurity.sophos.com/targeted-attack-nvidia-digital-sig

[E] http://msdn.microsoft.com/library/windows/desktop/aa364991%28v=vs.85%29.aspx

[F] http://nakedsecurity.sophos.com/unsafe-windows-dll-loading

[G] http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

[H] http://en.wikipedia.org/wiki/German_tank_problem

For further security information

http://www.sophos.com/why-sophos/our-people/technical-papers.aspx

http://nakedsecurity.sophos.com/

http://podcasts.sophos.com/

© 2013 Sophos Ltd. All rights reserved. Visit www.sophos.com/legal for more information. 13

http://www.sophos.com/legal

